Betweenness and Midpoints

1. Point B is between points A and C. If $AB = 3x - 1$, $BC = 9x + 8$, and $AC = 139$, find the measure of BC.

2. Point G is the midpoint of RH. It is known that $RG = 7x - 23$ and $RH = 6x + 90$. Find the value of GH.

3. It is known that $XY = 4x - 3$, $ZY = 11x - 60$, and $XZ = 2x + 13$. If point X is between the other two points, find the value of XY.

4. Assume that $ST + TU = SU$. The ratio between the lengths of ST and TU is 1:3. If SU has a length of 148, find the value of TU.

Page 1

Mr. S. Cella
Murray Avenue M.S.
5. Assume that point \(N \) is halfway between points \(L \) and \(M \). If \(\overline{NL} = 16x - 9 \), \(\overline{MN} = 11x + 96 \), and \(\overline{LM} = 20x + 234 \), find the length of \(\overline{LM} \).

6. Assume that \(\overline{FH} = \frac{1}{2}(\overline{FG}) \). If \(\overline{FH} = 9x - 21 \) and \(\overline{HG} = 4x + 14 \), find the length of \(\overline{FG} \).

7. Points \(A, B, C, \) and \(D \) are lined in a straight line, respectively. If \(\overline{AB} = 3(2x - 5) \), \(\overline{BC} = 7x + 13 \), \(\overline{CD} = 2x - 2 \), and \(\overline{AD} = 131 \), find the measure of \(\overline{BD} \).

8. Lower Moreland is running a field trip to the Jersey Shore! The bus driver was told to stop 37 miles into the trip (the half-way marker). If the entire journey can be represented by the expression \(13x - 30 \), find the value of \(x \).
9. Assume that M is the midpoint of JB and W is the midpoint of JM. If $JM = 8x + 10$ and $MB = 11x - 23$, find the measure of WM.

10. Assume that S is the midpoint of RT and U is between points S and T. It is known that $RS = 12x - 7$, $ST = 5x + 70$, $SU = 8y + 24$, and $UT = 3y + 2$. Find the measure of SU.

11. Assume that F is between DA and A is the midpoint of FR. If $DF = 9x - 4$, $FA = 3x + 18$, and $DA = 9x + 44$, find the measure of DR.

12. Assume that B is located between points A and C. Also assume that $AB = 2x + 1$, $BC = 3y + 2$, $AC = 20$, and $AC = 11x - 8y$. Find the values of x and y. (Hint: Think systems of equations!)