Consider the function \(y = a|x - h| + k \). Use a calculator to graph the following:

Begin by graphing \(y = |x| \)
Now graph \(y = |x - 2| \)
How about \(y = |x + 4| \)

I wonder… \(y = |x| + 3 \)
Try \(y = |x| - 2 \)
Maybe graph \(y = 2|x| \)

Finally graph \(y = -\frac{1}{3}|x| \)
Now graph \(y = 2|x - 2| - 3 \)
Finally graph \(y = 3|x + 4| + 2 \)

Returning to \(y = a|x - h| + k \), how does each variable effect the parent function \(y = |x| \)?

- \(a > 0 \):
- \(h > 0 \):
- \(k > 0 \):
- \(a < 0 \):
- \(h < 0 \):
- \(k < 0 \):

The point where the two linear pieces intersect is known as the **vertex**. Using the variables above, the vertex can always be found at what point?
Describe the transformations to the parent function \(y = |x| \) to create the following functions.

1. \(y = |x - 2| \)
 Transformation:

2. \(y = |x| + 3 \)
 Transformation:

3. \(y = 2|x + 3| \)
 Transformation:

4. \(y = 3|x| \)
 Transformation:

5. \(y = -2|x + 3| - 1 \)
 Transformation:

6. \(y = 2|x + 8| \)
 Transformation:

Write an equation for the absolute function described.

7. The parent function \(y = |x| \) flipped vertically, and shifted up 3 units.
 Equation:

8. The parent function \(y = |x| \) squeezed vertically by a factor of 2, shifted left 3 units and down 4 units.
 Equation:

Write an equation for the graphs shown below. Parent function is \(y = |x| \).

9. Equation:

10. Equation:

11. Equation: